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(Lennard- J ones) potentials without any truncation 
of the potential. Truncation, which corresponds to 
considering only, say, the first three or four shells 
of neighbours, involves an extra assumption that 
is unnecessary when high-speed computers are 
available and highly undesirable when more than 
one crystal structure is being considered for the 
same potential. Thus our calculations give precise 
results for ideal crystals interacting with potentials 
of the precise form given in equations (2) or (3). 

We considered using also oscillatory potentials 
such as have been discussed recently, (5 - 8) but did 
not pursue this investigation for the following 
reasons: 

(i) The only explicit potentials available are 
those of JOHNSON, HUTCHINSON and MARCH,(7) 
and since these involve a number of parameters 
derived specifically for each metal, generalizations 
become very difficult. 

(ii) In some associated calculations on surface 
energy, (9) out of the seven potentials available for 
cubic metals, one was divergent, one gave negative 
values of surface energy and a third gave a degree of 
anisotropy of more than 3, which is very much 
greater than that found by any other calculation or 
experiment. 

2. METHOD OF CALCULATION 
If the interaction energy of two atoms at a dis

tance, T, is given by E(T), then, for a perfect infinite 
crystal, the total lattice energy per atom is given by 

(1) 

where TI is an interatomic distance, 1111 is the 
number of neighbours of a given atom at this 
distance, and the sum extends over all possible TI• 

The method of calculation is therefore simply to 
list for each structure the possible values of r l and 
their associated multiplicities M i , and then 
evaluate the latt ice sum for particular potential 
functions E(r). This corresponds to rewriting 
equation (1) in the form 

(2) 

where 

(3) 

. represents the contribution to the lattice energy 
from the i-th shell of neighbours. 

The potentials considered were either Morse 
potentials of the form 

E(r)JEo = [l-exp{ -a(r-ro)Jro}]2-1, (4) 

or Mie (Lennard-Jones) potentials of the form 

E(r)JE 0= {ll(roJr)m-m(roJr)n}/(m-n), (5) 

where, in all potentials, Eo corresponds to the 
maximum interaction energy which occurs at a 
separation To' 

Calculations were made for various values of the 
Morse constant a between 3 and 6, while for the 
Mie functions the attractive exponent m varied 
from 4·5 to 9 and the repulsive exponent 1Z 

(always greater than m) ranged from 6 to 14. The 
scaling factors Eo were left arbitrary since only 
relative energy values are considered but the TO 
values were adjusted, as described below, to 
produce a minimum Ea for given a or (m, n). 
Figure 1 shows some Morse functions, while some 
typical Mie functions are plotted in the following 
paper (1) in comparison with a Morse function 
with a = 4. 

All summations with Morse potentials were 
carried through for the first 300 different values of 
TI, i.e. for the first 300 shells of neighbours. This 
corresponds to considering all interactions out to 
17-18 times T1 , and ensured that all energy values 
were correct to at least 8 significant figures. For 
Mie potentials, the initial summations were carried 
through for 500 shells of neighbours and the 
effects of more distant interactions taken into 
account by means of an integral approximation so 
that the overall accuracy should be comparable to 
that for the Morse potentials. 

(a) Relation between the lattice parameter and ro 
From equations (4) and (5) it can be seen that 

distances enter only through the dimensionless 
variable (T/ro), while distances in the crystal are 
available in terms of the lattice parameter or of the 
nearest-neighbour distance, T1' Thus, in order to 
calculate the sums, the ratio T1/rO must be specified 
so that we can write 

(6) 

Then, for the interatomic distances r l , the ratios 
bl = rdr1 are fixed and known for a particular 
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FIG. 1. Morse functions for various values of the Morse constant a. 

lattice, e.g. for the body-centred cubic lattice, 
b1 = 1, b2 = 2/y'3, b3 = y'(8/3), etc., and T/ro is 
now determinate. 

In this notation, the lattice energy with a Mie 
potential is 

(8) 

Then, minimum Ea is easily shown to occur for 
T1 = T1*' where 

(rO/r1*) = {S(m)!S(ll)F/(n-m). (9) .. -
The lattice sums S(j) have been -ealculated by 
JONES and INGHAM(10) for all integralj from 4 to 30 
and appear in their Table 1 as Bf for the body
centred cubic and Cf for the face-centred cubic 
lattice. Since we wished to use some half-integral 
exponents we have recalculated S(j) for all integral 
and half-integral values from 3·5 to 20. Values of 
(TO/T1*) are given in Table 1 for various values of 
(m, 1Z). 

For the Morse potentials, a similar procedure 
can be followed but (TO/T1 *) cannot be evaluated 
in terms of simple lattice sums and a numerical 
minimization procedure is necessary. The values of 

(TO/r 1*) appropriate to various Morse constants a 
are also given in Table 1. 

It may be noted here that GIRIFALCO and 
WEIZER(3) have considered a range of materials and 
used experimental values of sublimation energy, 
lattice parameter, and compressibility to deduce 
the values of Eo, a, and TO appropriate to each. 
Table 2 lists these as some of our calculations have 
been carried through with them. Although they 
express the Morse potential in a different form 
their values correspond to the same minimization 
criterion that we have used. Other workers have 
used a similar approach to deduce the (m, n) values 
of Mie potentials appropriate to different 
materials.(2) Some discussion of this appears 111 

Section 4(b) of the following paper.(l) 

(l?) Variation of the lattice parameter 
'In studying the effect of temperature or pres

sure on the lattice energy, we assume that the 
nearest-neighbour distance in a perfect unstrained 
crystal at OOK is r 1 * and that the only effect of 
temperature or pressure is to vary the T1 by a few 
per cent from this value. The sums such as those 
in equation (5) can then be evaluated to show the 
variation in lattice energy with lattice parameter. 
This has been carried out for r1/r1 * deviating from 
unity by up to ± 2·5 per cent for the Mie potentials 
and up to ± 5 per cent for the Morse potentials. 

In order that the variation in Ea, expressed here 
in terms of a variation in lattice parameter, can be 


